skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ritwika, V_P_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The costs of foraging can be high while also carrying significant risks, especially for consumers feeding at the top of the food chain.To mitigate these risks, many predators supplement active hunting with scavenging and kleptoparasitic behaviours, in some cases specializing in these alternative modes of predation.The factors that drive differential utilization of these tactics from species to species are not well understood.Here, we use an energetics approach to investigate the survival advantages of hunting, scavenging and kleptoparasitism as a function of predator, prey and potential competitor body sizes for terrestrial mammalian carnivores.The results of our framework reveal that predator tactics become more diverse closer to starvation, while the deployment of scavenging and kleptoparasitism is strongly constrained by the ratio of predator to prey body size.Our model accurately predicts a behavioural transition away from hunting towards alternative modes of predation with increasing prey size for predators spanning an order of magnitude in body size, closely matching observational data across a range of species.We then show that this behavioural boundary follows an allometric power‐law scaling relationship where the predator size scales with an exponent nearing 3/4 with prey size, meaning that this behavioural switch occurs at relatively larger threshold prey body size for larger carnivores.We suggest that our approach may provide a holistic framework for guiding future observational efforts exploring the diverse array of predator foraging behaviours. 
    more » « less